
A Distributed Caching Web Proxy Framework

Ovais A. Khan, Raza Ali
National University of Computer and Emerging Sciences

ST-4, Sector 17/D, Shah Latif Town, Karachi 75030, Pakistan
{ ovais.khan, ali.raza} @ nu.edu.pk

Abstract: The growth of HTTP traffic and experience

with use of proxy caches has demonstrated the need for
increasing the scalability and availability of proxy cache
software. To increase scalability, proxy caching software
needs to be written in a modular, decentralized fashion.
To make it more available, the service needs to be
transparent to the client. There are two approaches
available for proxy server implementation namely,
centralized and distributed. In a centralized cache server,
the main bottleneck is a central resource. On the other
hand, in a distributed cache, it is the communication
between the servers. We have selected the distributed
approach to provide efficient request redirection that
result in better load distribution and transparency of
service. Our system is a distributed caching web proxy
framework. It can accommodate any proxy server that
supports extension to its basic operation such as open
source proxy servers. Our emphasis is on transparency,
availability, scalability and load distribution. In addition,
we intend our system to work for high load environments
such as university departments or large companies.
Results will show clear performance difference in terms
of scalability and availability between the two
approaches.

INTRODUCTION

“One of the overall design goals is to create a
computing system which is capable of meeting almost
all of the requirements of a large computer utility.
Such systems must run continuously and reliably 7
days a week, 24 hours a day... and must be capable of
meeting wide service demands.

“Because the system must ultimately be
comprehensive and able to adapt to unknown future
requirements, its framework must be general, and
capable of evolving over time.” [1]

Our emphasis from design point of view is on
scalability, availability and transparency factors.
Additional advantages that we have achieved during our
work are in terms of load distribution and cost
effectiveness.

� By scalability, we mean that when the load offered to

the service increases, an incremental and linear increase
in hardware can maintain the same per-user level of
service.

� By availability, we mean that the service as a whole
must be available 24x7, despite transient partial
hardware or software failures.

� By transparency, we mean that the way the request is
serviced is transparent to the user as are its failures.

� By load distribution, we mean that the resources of our
distributed system are utilized properly.

� By cost effectiveness, we mean that the service must be
economical to administer and expand, even though it
potentially comprises many workstation nodes.

The growth of the Internet and the World Wide Web
have enabled increasing numbers of users to access vast
amounts of information stored at geographically
distributed sites. Due to the non-uniformity of
information access, however, popular web pages create
“hot spots” of network and server load, and thereby
significantly increase the latency for information access.

Large-scale distributed caches appear to provide an
opportunity to combat this latency [9] because they allow
users to benefit from data fetched by other users, and their
distributed architectures allow clients to access nearby
copies of data in the common case. Current web cache
systems define a hierarchy of data caches and follow a
horizontal and vertical mechanism of retreiving a
requested object [8]. It is mentioned in [5] that these
hierarchies of data caches often achieve modest hit rates,
can yield poor response times on a cache hit [10, 11], and
can slow down cache misses.

In this paper, we propose a distributed caching web
proxy framework, a combination of various existing
techniques for web proxy and scalable network services.
The framework harnesses the unused power of client
machines and shifts the overhead of request distribution
to client side with the help of a client proxy. The servers
maintain a group arrangement among which a leader or
coordinator is selected. The coordinator is responsible for
maintaining a list of available servers and their load
statistics. The client proxies communicate with the
coordinator for various information. Server failures
including that of the coordinator is handled using a
popular election algorithm.

This framework may evolve as a general framework
for scalable network services.

RELATED WORK

Existing cooperative proxy systems can be organized
in hierarchical and distributed manners [6]. The

hierarchical approach is based on the Internet Caching
Protocol (ICP) [25] with a fixed hierarchy. A page not in
the local cache of a proxy server is first requested from
neighboring proxies on the same hierarchy level. Root
proxy in the hierarchy will be queried if requests are not
resolved locally and they continue to climb the hierarchy
until the request objects are found. This often leads to a
bottleneck situation at the main root server. The
distributed approach is usually based on a hashing
algorithm like the Cache Array Routing Protocol (CARP)
[9].

Hash Routing

Hash Routing are deterministic hash-based
approaches for mapping an object to a unique sibling
cache [21, 22, 23]. This technique works at Application
Level and distributes the URL space among the sibling
caches, creating a single logical cache spread over many
caches. Because an object is cached at only one caching
node, hash routing can achieve a higher hit rate. On the
other hand, it has few drawbacks. One is its large network
traffic between caching nodes. Because a client cannot
retrieve objects directly from the cache of its local
caching node in most cases, a large number of object
transmissions between caching nodes occur in the hash
routing system. The other drawback is its lack of fault
tolerance. Because an object is only cached at one node,
all clients can suffer from errors or cache misses even
when just a single caching node in the system suffers
failure.

Load balancing at the client side using proxy servers
was explored by Wu and Yu [12]. They emphasized on
tuning the commonly used hashing algorithm for load
distribution. Researchers from MIT, on the other hand,
have proposed a new hashing algorithm called consistent
hashing to improve caching performance when resources
are added from time to time [13].

Super Proxy Script [11] is a client side application
level protocol which is a minor variant of Hash Routing.
It uses the Proxy Auto Configuration (PAC) script with
timeout / failover to provide a robust, scalable and
deterministic proxy caches. When PAC is used, a client
receives a list of proxy servers. If the local proxy is in
failure, the client can bypass it and forward its requests to
one of other caching proxies according to the proxy list.
The major point of failure is the machine carrying the
PAC script. Apart from that, most web browsers need to
be restarted to have any change in the configuration take
effect.

Round Robin DNS

In this scheme, when DNS server receives name
resolution queries, it returns the IP address of one of the
replicated servers in a round-robin fashion (RR-DNS). A
primary example of this scheme is the NCSA web site
[14]. There, however, are several drawbacks to DNS-
based solutions. A fundamental problem is caching of IP
addresses at client machines and local DNS servers which

makes the load less than perfectly balanced among the
servers. Another problem is that DNS servers know
nothing about server status or network topology, and then
selected server may be a distant, overloaded, or even
unavailable server.

Alternate DNS

A simple variation of RR-DNS is Alternate Domain
Name Server (ADNS) [20]. It acts as a normal DNS
server but implements laod balancing on current load on
servers. ADNS finds the IP address and port number that
the client should use to retrieve web pages from the
internet. The system is robust enough to recover from
failure of the client, the web proxies, and ADNS. The
proxies automatically restart the ADNS when it fails.

Socket-level Redirection Mechanism

Socket-level redirection mechanism is a transparent
mechanism to access replicated servers. Its main idea is to
redirect a client request to a replicated server in the
socket function of the client [15]. This mechanism
requires the modification of the socket library of the
client and do not include the overhead of packet rewriting
at all. But, making modifications to the socket library of
the client is not a simple task.

Magic Router

NOW project at Berkley has developed the
MagicRouter [16], which is a packet-filter-based
approach [17] to distributing network packets in a cluster.
The Magic Router acts as a switchboard that distributes
requests for Service to the individual nodes in a cluster. It
requires packets from a client be forwarded (or rewritten)
by the MagicRouter to the individual server chosen to
service the request. Also it requires the packet from the
server to be rewritten by the MagicRouter on its way
back.

TCP Router

An architecture slightly different from MagicRouter is
TCP Router [18], in which a ‘TCP Router’ acts as a front
end that forwards requests for the service to the individual
back-end servers of the cluster. TCP Router eliminates
the need to rewrite the packet going from the server to the
client and secondly, it assigns connection to the servers
based on the state of these servers.

Distributed Packet Rewriting

Distributed Packet Rewriting (DPR) [19] is a
distributed approach in which all hosts of the distributed
system participate in connection routing. Definitely, this
approach provides better fault tolerance and scalability.
But the packet level modification and session
management take too much of the effort. Scalability and
load distribution are major problems.

PROPOSED FRAMEWORK

Overview

The framework which we have implemented breaks
the proxy service into two pieces of software the client
proxy and the proxy server. The client proxy is a fully
functional but small scale and non-caching web proxy
server and runs on the client machine. The client web
browser is configured to client proxy, so all requests
reach the client proxy first and it is responsible for getting
them serviced. See Figure 1.

The client uses a discovery procedure to find out all
available proxy servers and uses hashing and a feedback
mechanism to transparently service all requests from
different proxy servers. The following sections provide
the details of all these procedures.

Client proxy

The client proxy software is a fully functional HTTP
1.0 proxy server. Caching is not implemented in the client
as the purpose of this proxy server is to distribute the
requests and isolate the client software from the
infrastructure and load changes taking place at the actual
proxy servers. We have currently used Java to write this
proxy server as it makes it independent of the client
platform.

The isolation provided by the client proxy effectively
solves the transparency problem mentioned earlier. The
client software now needs to know about only one proxy
server which is locally present. Client proxy runs a
Discovery procedure on-demand, when a certain
percentage of the requests fail or after the expiry of a
certain time interval. This way the client proxy can adapt
to the dynamic state of the proxy servers.

Upon receiving a web request the client proxy uses
the Hashing [11] technique to map this request onto one
of the proxy servers. The hash based distribution helps
localize the request service and not only increases the

cache hit-rate but also reduces the need to keep duplicate
copies of the same document on different proxy serves.

Request distribution using hashing

Another advantage that this scheme has achieved is

the distribution of workload among the client machines
and proxy servers. The client proxy has made the client
machine essentially a part of our web proxy service.
Instead if we concentrated all the distribution and service
functionality into the proxy servers either this would have
introduced a central resource such as DNS or router or
the working resource demands and distribution overhead
on the proxy servers would have greatly increased. Client
machines often have a lot of unused computing power
available at their disposal and such cooperative schemes
can make things a lot less complicated at both client and
server ends.

Proxy Server

The proxy servers are logically organized into two
types, coordinator or monitor proxy servers and non-
coordinator proxy servers. Currently we are using only
one proxy server per group. The selection for the
coordinator is done with the help of the Election
algorithm [21].

The selected coordinator is responsible for
maintaining a list of active proxy servers which is
provided to the client proxy during the discovery process.
Also it keeps the load statistics including the number of

current requests and average service time for all the proxy
servers. This information is provided to the client proxy
during the periodic discovery cycle so that requests
remain evenly distributed and no proxy server is
overloaded during a hot-spot.

Electing the Coordinator

This election algorithm is based on the classical Bully
Algorithm [21] except that the priority of a given node
depends on its IP address. The lower the IP address, the
higher the priority will be and vice versa.

Election Algorithm

The implementation of the Election algorithm is
straight forward. The communication takes place through
TCP and UDP port 54321. In order to check which of the
servers are up, we do a multicast on this port and the
servers which reply are up.

When a new node joins the network, it sends a
multicast message to a given IP range on the network. If
the coordinator is up, it will reply. If no reply is received,
the election procedure is started. The election procedure
will start when the election candidate will broadcast the
election message. Then it will look for all higher priority
nodes which are up. If a reply is received, it stops and
waits for the other node to start election and send it the
result. Once no reply is received, it will notify all other
members about its coordinator status.

Discovery algorithm

The discovery process is very simple in nature. The
client proxy is provided in its configuration a range of IP
addresses where at least one proxy server either
coordinator or non-coordinator is present. The client
proxy initiates the discovery process by scanning the IP
range from start address and searches to the end address.
For each address, it sends out a message “ Is Proxy” in
simple string format to that machine on a pre-defined port
using a TCP connection. If the connection fails or
garbage is returned in response then this machine is
skipped. If the machine responds with a “No” then this is
a non-coordinator proxy server and following this
message would be the IP address of the coordinator
machine. If the reply is a “Yes” then we have discovered
the coordinator of the group and following this message
would be the list of IP addresses of all the proxy servers
in the group.

This procedure provides a direct shortcut to the
coordinator proxy and avoids unnecessary
communication. The client after discovering the
coordinator remembers its address for later discovery
cycles and builds a table of proxy server addresses over
which it will map the requests. In case the coordinator
proxy goes down, the process will start over to discover
the new coordinator of the group.

������

��	
�

��	
�������

��	
�������

�����	
��

�	���		������

������

��	
�

�����	
��

����������	����	
���

�	���		������	����	
�

����	�����

�		������	����	
�

����	�����
Similarly the client proxy can send the message “Load

Stats” to the coordinator proxy to get the current statistics
and adapt its distribution pattern to avoid overloading any
proxy server.

Load Distribution Mechanism

Distribution of load is one of the core issues when
providing graceful degradation. As mentioned with
respect to the client proxy that this objective is achieved
through the hash-based routing technique. But a downside
is that when a machine goes down all mapped requests
will fail. The group would reorganize itself and the client
proxies would discover this in the next discovery cycle.
The client proxy would then adjust it’s modulo function
to map all requests to the available machines.

The change in modulo can cause a surge of download
because of cache losses. To counter this we propose a two
stage modulo, lets say the old and the new. The modulo is
calculated on the old one first to get the right mapping,
for as many proxy servers as possible, before the lost
server in the proxy list.

Proxy scaling is similarly controlled. When a new
machine comes up and becomes a member of the group
its IP is added to the end of the list by the coordinator.
After the next discovery cycle this machine is discovered
and the client proxies set both their old and new modulo
functions to the group’s new size. This again will cause a
disturbance in the pattern of cache access but since the
proxy group is scaling it will be able to handle the load.
Also due to this pattern change the new member will
receive a lot of requests and would quickly become an
active servicing member.

One problem the hash based routing can run into is
what may be called hot-spots. Hot-Spots can occur when
the user request suddenly get focused on a set of websites,
lets say newspaper sites after 9/11. Due to this it may
happen that some servers receive very few requests while
others are getting overloaded. Solution to this problem is
provided through the load statistics management at the
coordinator. During each discovery cycle the client
proxies not only ask for the list of servers but also their
current load status. If the server mapped onto a request is
currently serving a higher number of requests than a pre-
defined number then this request is sent randomly to one
of the least loaded servers. The randomness is kept to
counter a sudden shift of load towards the less loaded
servers.

Configuration Selection Problem

We have not implemented this feature but it is useful
to have it in the framework and which we might
implement in future. The configuration selection problem
deals with mapping the requests of a user belonging to a
particular user group onto a set of proxy servers with a
specified configuration. For example two such groups in a
university environment may be faculty and students. Both
may have different requirements hence their requests sent
to different machines.

������

��	
�

������	
���� �

���	�!���� �

��
���
�"
#�
��

	�!����"#���
$�"#���

%$�
����&��'�&�������"#���

�(�����������

����&��'��������

�	���'#����	���������	�

��	���&

Another implication of the configuration selection is

that all machines do not have to run all kinds of services.
For example some machines are running proxy servers
dedicated to normal web requests, while others may
support SSL and another group of proxy servers may
allow FTP or gopher. This allows the proxy servers to run
smaller, faster and more purpose oriented software while
the job of sending the request to the correct machine is
shifted to client end.

This kind of separate machine configuration would
allow system administrators to easily maintain machines
for serving different user group reducing the complexity
of managing all configurations at one place and avoiding
potential security risks.

Administration

Administration is a serious concern for systems of
many nodes. We started from [27], which describes how a
unified monitoring/reporting framework with data
visualization support was an effective tool for simplifying
cluster administration. Our framework has the ability to
incorporate such a monitoring and administrative module,
as the framework already has the ability to locate the
active nodes. The only need is to define the format of the
configuration and log files and implementation of a
quorum based algorithm [28] for keeping the
configuration consistent.

Cache Sharing

There has been a lot of research on the topic of proxy
caching and cache sharing. Four basic design principles
for large-scale caches are: (1) minimize the number of
hops to locate and access data, (2) do not slow down
misses, (3) share data among many caches, and (4) cache
data close to clients. Although these principles may seem
obvious in retrospect, we find that current cache
architectures routinely violate them at a significant
performance cost [5].

Web caching systems tend to be composed of
multiple, distributed caches to improve system scalability,
availability, or to leverage physical locality. In terms of
scalability and availability, the existence of multiple,
distributed caches permits a system to deal with a high
degree of concurrent client requests as well as survive the
failure of some caches during normal operation. In terms
of physical locality, assuming that bandwidth is constant,
simply having caches closer in proximity to certain
groups of users may be an effective way to reduce
average network latencies, since there is often a
correlation between the location of a user and the objects
requested [22].

There are five well-known protocols [23] for inter-
cache communication: ICP, cache digests, CRP, CARP,
and WCCP. ICP evolved from the Harvest project and

was explored in more detail within Squid. It has the
longest history and is the most mature. ICP uses simple
queries to locate the best possible location of the
requested object. One issue is of desirable limits to the
depth of the cache hierarchy [24]. Another scalability
concern was the number of ICP messages that could be
generated as the number of cache peers increased [13].
CRP protocol uses multicast to query cache meshes. To
optimize the path of meshes to query, adaptive caching
uses CRP to determine the likely direction of origin for
the content.

Cache digests is another technique which is used for
this purpose, such as those implemented by Squid [13]
and the Summary Cache [26]. Cisco’s WCCP and
Microsoft’s CARP [9] method are two of the proprietary
protocols.

We have used hashing on the client side to locate the
probable server containing the object directly. If the
object is not located, proxy server has been configured to
issue ICP multicast query. These two techniques have
been used in order to increase the scalability and
availability while still maintaining high hit rates.

When a client issues a request for an object and all the
servers are up, the client proxy hashes and sends the
requests to the server responsible for fetching this object.
If a particular proxy is down, the requests bound for this
particular proxy will be distributed to other proxies.
Definitely, during the time the proxy is down, other
proxies will cache its objects. After the proxy recovers,
ICP comes into the picture to increase the hits for those
objects serviced by other proxies during its down time.
Thus combining the two schemes produces better hit rates
even when some portion of the network is down.

PROPOSED EXPERIMENTAL SETUP

Introduction

In order to test the proposed framework if it provides
the objectives of an ideal proxy environment, we plan to
test the reference implementation first on its ability to
load balance and cluster in reaction to experienced hot-
spot situations.

We also need to test the ability of the framework to
adapt to various changes in the underlying infrastructure.
The gained results will show how such distributed proxy
system adapts to the request pattern in such a way that
load balancing and data clustering will emerge. The
performance of any proxy architectures are highly
dependent on the pattern of the requests, but our proposed
framework is able to handle local hot spots to a good
degree.

Architecture

The infrastructure proposed for later simulations is
similar to an institutional proxy environment. There are n
clients and m proxy servers servicing their requests as
shown in Figure 3. The final requested destinations will
be from amongst the k web servers that we have setup on
the Local Area Network. We assume that in this context,
going to any proxy within the array of proxies, even by
doing a maximum number of hops, is always faster than
requesting the data from the origin server. A local hit will
always be assumed faster than a remote request. We
further assume full knowledge and full connectivity
within the proxy layer.

In place of a normal web browser, we have used
Scalable URL Reference Generator (SURGE) to generate
references which match empirical measurements of
various web traffic pattern.

Request Pattern

The request distribution of SURGE has been shown to
follows the Zipf's law for popularity at real Web servers
[29]. Resent research has shown that a power-law or

ZIPF-law distribution is very suitable to describe the
experienced request pattern on a proxy server [30]. In our
simulation, clients inject requests for all existing servers
based on a ZIPF-distribution. Future work with a real
system shall broaden these limitations.

Preliminary simulations have shown that the outcome
of the simulations is highly dependent on the request
pattern.

Performance Comparison Tests

We plan to setup four squid proxies and four clients.
A set of five web servers on the Local Area Network will
be used as the destination, for all these tests.

Standalone (Hierarchical) Proxy Setup: In the
standalone setup, all the squid proxies are independent
and they are not sharing any information and cache.

ICP Enabled Proxy Setup: In the second test
environment, we enable the ICP in all the squid proxies.
They can now query their peer proxies for any object
before asking the web server.

Super Proxy: This technique is closest to our
framework. We simply setup a PAC file on all the servers
and configure the browsers to automatically setup using
this PAC file.

Changing infrastructure

In order to test the performance of the framework,
under changing conditions we will simulate an increase in
requests. In the first half, we will keep on removing
proxies, with constant load. While in the second half of
the test, we will increase the load first to burden the
current servers and then introduce new proxies.

EXPERIMENTAL RESULTS

The experiments are currently in progress and no
results can be presented at this stage.

CONCLUSIONS

We presented a distributed network service
framework , which was illustrated with its implementation
as a scalable web proxy framework. Distributed services
are the need of the time and we have demonstrated with
our work that existing services can be improved greatly
by switching to distributed and cooperative solutions.

FUTURE DIRECTIONS

The next step in improvements is to implement a
integerated security architecture. Providing access rights
on services and objects.

This framework may be adapted to provide other
services such as the currently popular streaming media
services. It can evolve as a general framework for
scalable network services.

This framework gives us the ability to involve the
client in the decision making for service request. We can

look for furthur ways to harness the clients unused power
to simplify the server end software and take it towards
truly distributed system.

REFERENCES

[1] F. J. Corbató and V. A. Vyssotsky, “ Introduction and
Overview of the Multics System”, in AFIPS
Conference Proceedings, 27, pp. 185-196, 1965.

[2] C. Maltzahn, K. Richardson, and D. Grunwald.
“Performance Issues of Enterprise Level Web
Proxies” , in Proceedings of the SIGMETRICS
Conference on Measurement and Modeling of
Computer Systems, June 1997.

[3] A. Rousskov. “On Performance of Caching Proxies” ,
http://www.cs.ndsu.nodak.edu/rousskov/research/cach
e/squid/profiling/papers, 1996.

[4] D. Wessels and K. Claffy. “RFC 2186: Internet Cache
Protocol (ICP), Version2” , September 1997.

[5] R. Tewari, M. Dahlin, H. M. Vin, and J. B. Kay,
“Beyond Hierchies: Design Considerations for
Distributed Caching on the Internet” , UTCS
Technical Report: TR98-04

[6] Povey, D., Harrison, J., “A Distributed Internet
Cache” ,

[7] Dykes, S. G., C. L. Jeffery, and S. Das, `Taxonomy
and Design for Distributed Web Caching” , in
Proceedings of the Hawaii International Conference
on System Science, 1999.

[8] Rodriguez, P., C. Spanner, and E. W. Biersack, “Web
Caching Architectures: Hierarchical and Distributed
Caching” , in: Proceedings of the Fourth International
WWW Caching Workshop, 1999.

[9] Cohen, J., N. Phadnis, V. Valloppillil, and K. W.
Ross, “Cache Array Routing Protocol V.1.1” , 1997.

[10] KeithW. Ross, “Hash-Routing for Collections of
Shared Web Caches” , IEEE Network, pp. 37–44,
November/December 1997.

[11] K. Doi, “Super Proxy Script: How to make
distributed proxy servers by URL hashing” , White
Paper: http://naragw.sharp.co.jp/sps/, August 1996.

[12] Wu, K. and P. Yu, “Load Balancing and Hot Spot
Relief for Hash Routing Among a Collection of Proxy
Caches” , in Proceedings of the 19th International
Conference on Distributed Computing Systems, 1999.

[13] Karger, D., T. Leighton, D. Lewin, and A. Sherman,
“Web Caching with Consistent Hashing” in
Proceedings of the WWW8 Conference, 1999.

[14] E. D. Katz, M. Butler, and R. McGrath, “A scalable
HTTP server: The NCSA prototype,” Computer
Networks and ISDN Systems, vol. 27, pp. 155-164,
1994.

[15] Han, Jaesun, “A Socket-Level Redirection
Mechanism for Providing Internet Scalability” , 6th
Samsung Humantech Thesis,
http://www.samsung.com/AboutSAMSUNG/SocialCo
mmitment/HumantechThesis/WinningPaper6.htm

[16] Eric Anderson, David Patterson, and Eric Brewer,
“The MagicRouter: An application of fast packet
interposing” , Submitted to OSDI 1996, May 1996

[17] Jefferey Mogul, Richard Rashid, and Micheal
Accetta. “The Packet Filter: An Efficient Mechanism
for User-leve; Network Code” , in proceedings of
SOSP’87: The 11th ACM Symposium on Operating
Systems Principles, 1987.

[18] Daniel M. Dias, William Kish, Rajat Mukherjee, and
Renu Tewari. “A scalable and highly available web
server” , in Proceedings of IEEE COMPCON’96, pp.
85-92, 1996.

[19] A. Bestavros, M. Crovella, J. Liu, and D. Martin,
“Distributed Packet Rewriting and its Application to
Scalable Web Server Architectures,” in Proceedings
of 6th IEEE International Conference on Network
Protocols, IEEE Computer Society Press, Los
Alamitos, California, pp. 290-297, 1998.

[20] Long Le and Dorian Miller, “Load Balancing Web
Proxy Service” ,
http://www.cs.unc.edu/~dorianm/academics/comp243/
loadproxy.pdf, December 2000

[21] H. Garcia-Molina. “Elections in a Distributed
Computing System”, IEEE Trans. on Computers, 31,
pp. 48--59, January 1982

[22] Greg Barish and Katia Obraczka, “World Wide Web
Caching: Trends and Techniques”

[23] I. Melve, “ Inter-cache communication protocols” ,
IETF WREC Working Group Draft, 1999.

[24] M. Baentsch, L. Baum, G. Molter, S. Rothkugel, and
P. Sturm. “World wide web caching - the application
level view of the internet” , IEEE Communications
Magazine vol. 35 June 1997.

[25] K. Claffy and D. Wessels. “ ICP and the Squid Web
Cache” , 1997.

[26] L. Fan, P. Cao, J. Almeida, and A.Z. Border.
“Summary cache: A scalable wide-area web cache
sharing protocol” , Computer Sciences Department
University of WisconsinMadison, 1998.

[27] E. Anderson and David A. Patterson, “Extensible,
Scalable Monitoring For Clusters of Computers” , in
Proc. Large Installation System Administration
Confere (LISA XI), 1997.

[28] D. K. Gifford, “Weighted Voting for Replicate
Data” , in Proceedings of the 7th ACM Symposium on
Operating Systems Principles, pp 150-159, 1979

[29] P. Barford and M. Crovella, “Generating
Representative Web Workloads for Network and
Server Performance Evaluation” , in Proceedings of
the 1998 ACP SIGMETRICS Intl. Conference on
Measurment and Modeling of Computer Systems, pp.
151-160, July 1998

[30] Lee Breslau, Pei Cao, Li Fan, Graham Phillips, Scott
Shenker, “Web Caching and Zipf-like Distributions:
Evidence and Implications” , Technical Report 1371,
Computer Sciences Dept, Univ. of Wisconsin-
Madison, April 1998

