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Abstract: The growth of HTTP traffic and experience 

with use of proxy caches has demonstrated the need for 
increasing the scalability and availability of proxy cache 
software. To increase scalability, proxy caching software 
needs to be written in a modular, decentralized fashion. 
To make it more available, the service needs to be 
transparent to the client. There are two approaches 
available for proxy server implementation namely, 
centralized and distributed. In a centralized cache server, 
the main bottleneck is a central resource. On the other 
hand, in a distributed cache, it is the communication 
between the servers. We have selected the distributed 
approach to provide efficient request redirection that 
result in better load distribution and transparency of 
service. Our system is a distributed caching web proxy 
framework. It can accommodate any proxy server that 
supports extension to its basic operation such as open 
source proxy servers. Our emphasis is on transparency, 
availability, scalability and load distribution. In addition, 
we intend our system to work for high load environments 
such as university departments or large companies. 
Results will show clear performance difference in terms 
of scalability and availability between the two 
approaches. 

INTRODUCTION 

“One of the overall design goals is to create a 
computing system which is capable of meeting almost 
all of the requirements of a large computer utility. 
Such systems must run continuously and reliably 7 
days a week, 24 hours a day... and must be capable of 
meeting wide service demands. 

“Because the system must ultimately be 
comprehensive and able to adapt to unknown future 
requirements, its framework must be general, and 
capable of evolving over time.”  [1] 
 

Our emphasis from design point of view is on 
scalability, availability and transparency factors. 
Additional advantages that we have achieved during our 
work are in terms of load distribution and cost 
effectiveness. 

 
� By scalability, we mean that when the load offered to 

the service increases, an incremental and linear increase 
in hardware can maintain the same per-user level of 
service.  

� By availability, we mean that the service as a whole 
must be available 24x7, despite transient partial 
hardware or software failures. 

� By transparency, we mean that the way the request is 
serviced is transparent to the user as are its failures. 

� By load distribution, we mean that the resources of our 
distributed system are utilized properly. 

� By cost effectiveness, we mean that the service must be 
economical to administer and expand, even though it 
potentially comprises many workstation nodes.  

The growth of the Internet and the World Wide Web 
have enabled increasing numbers of users to access vast 
amounts of information stored at geographically 
distributed sites. Due to the non-uniformity of 
information access, however, popular web pages create 
“hot spots”  of network and server load, and thereby 
significantly increase the latency for information access.  

Large-scale distributed caches appear to provide an 
opportunity to combat this latency [9] because they allow 
users to benefit from data fetched by other users, and their 
distributed architectures allow clients to access nearby 
copies of data in the common case. Current web cache 
systems define a hierarchy of data caches  and follow a 
horizontal and vertical mechanism of retreiving a 
requested object [8]. It is mentioned in [5] that these 
hierarchies of data caches often achieve modest hit rates, 
can yield poor response times on a cache hit [10, 11], and 
can slow down cache misses. 

In this paper, we propose a distributed caching web 
proxy framework, a combination of various existing 
techniques for web proxy and scalable network services. 
The framework harnesses the unused power of client 
machines and shifts the overhead of request distribution 
to client side with the help of a client proxy. The servers 
maintain a group arrangement among which a leader or 
coordinator is selected. The coordinator is responsible for 
maintaining a list of available servers and their load 
statistics. The client proxies communicate with the 
coordinator for various information. Server failures 
including that of the coordinator is handled using a 
popular election algorithm. 

This framework may evolve as a general framework 
for scalable network services. 

RELATED WORK 

Existing cooperative proxy systems can be organized 
in hierarchical and distributed manners [6]. The 



hierarchical approach is based on the Internet Caching 
Protocol (ICP) [25] with a fixed hierarchy. A page not in 
the local cache of a proxy server is first requested from 
neighboring proxies on the same hierarchy level. Root 
proxy in the hierarchy will be queried if requests are not 
resolved locally and they continue to climb the hierarchy 
until the request objects are found. This often leads to a 
bottleneck situation at the main root server. The 
distributed approach is usually based on a hashing 
algorithm like the Cache Array Routing Protocol (CARP) 
[9].  

Hash Routing 

Hash Routing are deterministic hash-based 
approaches for mapping an object to a unique sibling 
cache [21, 22, 23]. This technique works at Application 
Level and distributes the URL space among the sibling 
caches, creating a single logical cache spread over many 
caches. Because an object is cached at only one caching 
node, hash routing can achieve a higher hit rate. On the 
other hand, it has few drawbacks. One is its large network 
traffic between caching nodes. Because a client cannot 
retrieve objects directly from the cache of its local 
caching node in most cases, a large number of object 
transmissions between caching nodes occur in the hash 
routing system. The other drawback is its lack of fault 
tolerance. Because an object is only cached at one node, 
all clients can suffer from errors or cache misses even 
when just a single caching node in the system suffers 
failure. 

Load balancing at the client side using proxy servers 
was explored by Wu and Yu [12]. They emphasized on 
tuning the commonly used hashing algorithm for load 
distribution. Researchers from MIT, on the other hand, 
have proposed a new hashing algorithm called consistent 
hashing to improve caching performance when resources 
are added from time to time [13]. 

Super Proxy Script [11] is a client side application 
level protocol which is a minor variant of Hash Routing. 
It uses the Proxy Auto Configuration (PAC) script with 
timeout / failover to provide a robust, scalable and 
deterministic proxy caches. When PAC is used, a client 
receives a list of proxy servers. If the local proxy is in 
failure, the client can bypass it and forward its requests to 
one of other caching proxies according to the proxy list. 
The major point of failure is the machine carrying the 
PAC script. Apart from that, most web browsers need to 
be restarted to have any change in the configuration take 
effect. 

Round Robin DNS 

In this scheme, when DNS server receives name 
resolution queries, it returns the IP address of one of the 
replicated servers in a round-robin fashion (RR-DNS). A 
primary example of this scheme is the NCSA web site 
[14]. There, however, are several drawbacks to DNS-
based solutions. A fundamental problem is caching of IP 
addresses at client machines and local DNS servers which 

makes the load less than perfectly balanced among the 
servers. Another problem is that DNS servers know 
nothing about server status or network topology, and then 
selected server may be a distant, overloaded, or even 
unavailable server. 

Alternate DNS 

A simple variation of RR-DNS is Alternate Domain 
Name Server (ADNS) [20]. It acts as a normal DNS 
server but implements laod balancing on current load on 
servers. ADNS finds the IP address and port number that 
the client should use to retrieve web pages from the 
internet. The system is robust enough to recover from 
failure of the client, the web proxies, and ADNS. The 
proxies automatically restart the ADNS when it fails. 

Socket-level Redirection Mechanism 

Socket-level redirection mechanism is a transparent 
mechanism to access replicated servers. Its main idea is to 
redirect a client request to a replicated server in the 
socket function of the client [15]. This mechanism 
requires the modification of the socket library of the 
client and do not include the overhead of packet rewriting 
at all. But, making modifications to the socket library of 
the client is not a simple task. 

Magic Router 

NOW project at Berkley has developed the 
MagicRouter [16], which is a packet-filter-based 
approach [17] to distributing network packets in a cluster. 
The Magic Router acts as a switchboard that distributes 
requests for Service to the individual nodes in a cluster. It 
requires packets from a client be forwarded (or rewritten) 
by the MagicRouter to the individual server chosen to 
service the request. Also it requires the packet from the 
server to be rewritten by the MagicRouter on its way 
back. 

TCP Router 

An architecture slightly different from MagicRouter is 
TCP Router [18], in which a ‘TCP Router’  acts as a front 
end that forwards requests for the service to the individual 
back-end servers of the cluster. TCP Router eliminates 
the need to rewrite the packet going from the server to the 
client and secondly, it assigns connection to the servers 
based on the state of these servers. 

Distributed Packet Rewriting 

Distributed Packet Rewriting (DPR) [19] is a 
distributed approach in which all hosts of the distributed  
system participate in connection routing. Definitely, this 
approach provides better fault tolerance and scalability. 
But the packet level modification and session 
management take too much of the effort. Scalability and 
load distribution are major problems.



 
 

PROPOSED FRAMEWORK 

Overview 

The framework which we have implemented breaks 
the proxy service into two pieces of software the client 
proxy and the proxy server. The client proxy is a fully 
functional but small scale and non-caching web proxy 
server and runs on the client machine. The client web 
browser is configured to client proxy, so all requests 
reach the client proxy first and it is responsible for getting 
them serviced. See Figure 1.  

The client uses a discovery procedure to find out all 
available proxy servers and uses hashing and a feedback 
mechanism to transparently service all requests from 
different proxy servers. The following sections provide 
the details of all these procedures. 

Client proxy 

The client proxy software is a fully functional HTTP 
1.0 proxy server. Caching is not implemented in the client 
as the purpose of this proxy server is to distribute the 
requests and isolate the client software from the 
infrastructure and load changes taking place at the actual 
proxy servers. We have currently used Java to write this 
proxy server as it makes it independent of the client 
platform. 

The isolation provided by the client proxy effectively 
solves the transparency problem mentioned earlier. The 
client software now needs to know about only one proxy 
server which is locally present. Client proxy runs a 
Discovery procedure on-demand, when a certain 
percentage of the requests fail or after the expiry of a 
certain time interval. This way the client proxy can adapt 
to the dynamic state of the proxy servers. 

Upon receiving a web request the client proxy uses 
the Hashing [11] technique to map this request onto one 
of the proxy servers. The hash based distribution helps 
localize the request service and not only increases the 

cache hit-rate but also reduces the need to keep duplicate 
copies of the same document on different proxy serves. 

 
Request distribution using hashing 

 
Another advantage that this scheme has achieved is 

the distribution of workload among the client machines 
and proxy servers. The client proxy has made the client 
machine essentially a part of our web proxy service. 
Instead if we concentrated all the distribution and service 
functionality into the proxy servers either this would have 
introduced a central resource such as DNS or router or 
the working resource demands and distribution overhead 
on the proxy servers would have greatly increased. Client 
machines often have a lot of unused computing power 
available at their disposal and such cooperative schemes 
can make things a lot less complicated at both client and 
server ends. 

Proxy Server 

The proxy servers are logically organized into two 
types, coordinator or monitor proxy servers and non-
coordinator proxy servers. Currently we are using only 
one proxy server per group. The selection for the 
coordinator is done with the help of the Election 
algorithm [21]. 

The selected coordinator is responsible for 
maintaining a list of active proxy servers which is 
provided to the client proxy during the discovery process. 
Also it keeps the load statistics including the number of 



current requests and average service time for all the proxy 
servers. This information is provided to the client proxy 
during the periodic discovery cycle so that requests 
remain evenly distributed and no proxy server is 
overloaded during a hot-spot. 

Electing the Coordinator 

This election algorithm is based on the classical Bully 
Algorithm [21] except that the priority of a given node 
depends on its IP address. The lower the IP address, the 
higher the priority will be and vice versa.  

Election Algorithm 

The implementation of the Election algorithm is 
straight forward. The communication takes place through 
TCP and UDP port 54321. In order to check which of the 
servers are up, we do a multicast on this port and the 
servers which reply are up.  

When a new node joins the network, it sends a 
multicast message to a given IP range on the network. If 
the coordinator is up, it will reply. If no reply is received, 
the election procedure is started. The election procedure 
will start when the election candidate will broadcast the 
election message. Then it will look for all higher priority 
nodes which are up. If a reply is received, it stops and 
waits for the other node to start election and send it the 
result. Once no reply is received, it will notify all other 
members about its coordinator status. 

Discovery algorithm 

The discovery process is very simple in nature. The 
client proxy is provided in its configuration a range of IP 
addresses where at least one proxy server either 
coordinator or non-coordinator is present. The client 
proxy initiates the discovery process by scanning the IP 
range from start address and searches to the end address. 
For each address, it sends out a message “ Is Proxy”  in 
simple string format to that machine on a pre-defined port 
using a TCP connection. If the connection fails or 
garbage is returned in response then this machine is 
skipped. If the machine responds with a “No”  then this is 
a non-coordinator proxy server and following this 
message would be the IP address of the coordinator 
machine. If the reply is a “Yes”  then we have discovered 
the coordinator of the group and following this message 
would be the list of IP addresses of all the proxy servers 
in the group. 

This procedure provides a direct shortcut to the 
coordinator proxy and avoids unnecessary 
communication. The client after discovering the 
coordinator remembers its address for later discovery 
cycles and builds a table of proxy server addresses over 
which it will map the requests. In case the coordinator 
proxy goes down, the process will start over to discover 
the new coordinator of the group. 
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Similarly the client proxy can send the message “Load 

Stats”  to the coordinator proxy to get the current statistics 
and adapt its distribution pattern to avoid overloading any 
proxy server. 

Load Distribution Mechanism 

Distribution of load is one of the core issues when 
providing graceful degradation. As mentioned with 
respect to the client proxy that this objective is achieved 
through the hash-based routing technique. But a downside 
is that when a machine goes down all mapped requests 
will fail. The group would reorganize itself and the client 
proxies would discover this in the next discovery cycle. 
The client proxy would then adjust it’s modulo function 
to map all requests to the available machines.  

The change in modulo can cause a surge of download 
because of cache losses. To counter this we propose a two 
stage modulo, lets say the old and the new. The modulo is 
calculated on the old one first to get the right mapping, 
for as many proxy servers as possible, before the lost 
server in the proxy list. 

Proxy scaling is similarly controlled. When a new 
machine comes up and becomes a member of the group 
its IP is added to the end of the list by the coordinator. 
After the next discovery cycle this machine is discovered 
and the client proxies set both their old and new modulo 
functions to the group’s new size. This again will cause a 
disturbance in the pattern of cache access but since the 
proxy group is scaling it will be able to handle the load. 
Also due to this pattern change the new member will 
receive a lot of requests and would quickly become an 
active servicing member. 

One problem the hash based routing can run into is 
what may be called hot-spots. Hot-Spots can occur when 
the user request suddenly get focused on a set of websites, 
lets say newspaper sites after 9/11. Due to this it may 
happen that some servers receive very few requests while 
others are getting overloaded. Solution to this problem is 
provided through the load statistics management at the 
coordinator. During each discovery cycle the client 
proxies not only ask for the list of servers but also their 
current load status. If the server mapped onto a request is 
currently serving a higher number of requests than a pre-
defined number then this request is sent randomly to one 
of the least loaded servers. The randomness is kept to 
counter a sudden shift of load towards the less loaded 
servers. 



 

 
 

Configuration Selection Problem 

We have not implemented this feature but it is useful 
to have it in the framework and which we might 
implement in future. The configuration selection problem 
deals with mapping the requests of a user belonging to a 
particular user group onto a set of proxy servers with a 
specified configuration. For example two such groups in a 
university environment may be faculty and students. Both 
may have different requirements hence their requests sent 
to different machines. 
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Another implication of the configuration selection is 

that all machines do not have to run all kinds of services. 
For example some machines are running proxy servers 
dedicated to normal web requests, while others may 
support SSL and another group of proxy servers may 
allow FTP or gopher. This allows the proxy servers to run 
smaller, faster and more purpose oriented software while 
the job of sending the request to the correct machine is 
shifted to client end. 

This kind of separate machine configuration would 
allow system administrators to easily maintain machines 
for serving different user group reducing the complexity 
of managing all configurations at one place and avoiding 
potential security risks. 

Administration 

Administration is a serious concern for systems of 
many nodes. We started from [27], which describes how a 
unified monitoring/reporting framework with data 
visualization support was an effective tool for simplifying 
cluster administration. Our framework has the ability to 
incorporate such a monitoring and administrative module, 
as the framework already has the ability to locate the 
active nodes. The only need is to define the format of the 
configuration and log files and implementation of a 
quorum based algorithm [28] for keeping the 
configuration consistent. 

Cache Sharing 

There has been a lot of research on the topic of proxy 
caching and cache sharing. Four basic design principles 
for large-scale caches are: (1) minimize the number of 
hops to locate and access data, (2) do not slow down 
misses, (3) share data among many caches, and (4) cache 
data close to clients. Although these principles may seem 
obvious in retrospect, we find that current cache 
architectures routinely violate them at a significant 
performance cost [5]. 

Web caching systems tend to be composed of 
multiple, distributed caches to improve system scalability, 
availability, or to leverage physical locality. In terms of 
scalability and availability, the existence of multiple, 
distributed caches permits a system to deal with a high 
degree of concurrent client requests as well as survive the 
failure of some caches during normal operation. In terms 
of physical locality, assuming that bandwidth is constant, 
simply having caches closer in proximity to certain 
groups of users may be an effective way to reduce 
average network latencies, since there is often a 
correlation between the location of a user and the objects 
requested [22]. 

There are five well-known protocols [23] for inter-
cache communication: ICP, cache digests, CRP, CARP, 
and WCCP. ICP evolved from the Harvest project and 



was explored in more detail within Squid. It has the 
longest history and is the most mature. ICP uses simple 
queries to locate the best possible location of the 
requested object. One issue is of desirable limits to the 
depth of the cache hierarchy [24]. Another scalability 
concern was the number of ICP messages that could be 
generated as the number of cache peers increased [13]. 
CRP protocol uses multicast to query cache meshes. To 
optimize the path of meshes to query, adaptive caching 
uses CRP to determine the likely direction of origin for 
the content.  

Cache digests is another technique which is used for 
this purpose, such as those implemented by Squid [13] 
and the Summary Cache [26]. Cisco’s WCCP and 
Microsoft’s CARP [9] method are two of the proprietary 
protocols. 

We have used hashing on the client side to locate the 
probable server containing the object directly. If the 
object is not located, proxy server has been configured to 
issue ICP multicast query. These two techniques have 
been used in order to increase the scalability and 
availability while still maintaining high hit rates.  

When a client issues a request for an object and all the 
servers are up, the client proxy hashes and sends the 
requests to the server responsible for fetching this object. 
If a particular proxy is down, the requests bound for this 
particular proxy will be distributed to other proxies. 
Definitely, during the time the proxy is down, other 
proxies will cache its objects. After the proxy recovers, 
ICP comes into the picture to increase the hits for those 
objects serviced by other proxies during its down time. 
Thus combining the two schemes produces better hit rates 
even when some portion of the network is down. 

PROPOSED EXPERIMENTAL SETUP 

Introduction 

In order to test the proposed framework if it provides 
the objectives of an ideal proxy environment, we plan to 
test the reference implementation first on its ability to 
load balance and cluster in reaction to experienced hot-
spot situations.  

We also need to test the ability of the framework to 
adapt to various changes in the underlying infrastructure. 
The gained results will show how such distributed proxy 
system adapts to the request pattern in such a way that 
load balancing and data clustering will emerge. The 
performance of any proxy architectures are highly 
dependent on the pattern of the requests, but our proposed 
framework is able to handle local hot spots to a good 
degree. 

Architecture 

The infrastructure proposed for later simulations is 
similar to an institutional proxy environment. There are n 
clients and m proxy servers servicing their requests as 
shown in Figure 3. The final requested destinations will 
be from amongst the k web servers that we have setup on 
the Local Area Network. We assume that in this context, 
going to any proxy within the array of proxies, even by 
doing a maximum number of hops, is always faster than 
requesting the data from the origin server. A local hit will 
always be assumed faster than a remote request. We 
further assume full knowledge and full connectivity 
within the proxy layer. 

In place of a normal web browser, we have used 
Scalable URL Reference Generator (SURGE) to generate 
references which match empirical measurements of 
various web traffic pattern. 

Request Pattern 

The request distribution of SURGE has been shown to 
follows the Zipf's law for popularity at real Web servers 
[29]. Resent research has shown that a power-law or

 



ZIPF-law distribution is very suitable to describe the 
experienced request pattern on a proxy server [30]. In our 
simulation, clients inject requests for all existing servers 
based on a ZIPF-distribution. Future work with a real 
system shall broaden these limitations. 

Preliminary simulations have shown that the outcome 
of the simulations is highly dependent on the request 
pattern.  

Performance Comparison Tests 

We plan to setup four squid proxies and four clients. 
A set of five web servers on the Local Area Network will 
be used as the destination, for all these tests. 

Standalone (Hierarchical) Proxy Setup: In the 
standalone setup, all the squid proxies are independent 
and they are not sharing any information and cache. 

ICP Enabled Proxy Setup: In the second test 
environment, we enable the ICP in all the squid proxies. 
They can now query their peer proxies for any object 
before asking the web server. 

Super Proxy: This technique is closest to our 
framework. We simply setup a PAC file on all the servers 
and configure the browsers to automatically setup using 
this PAC file. 

Changing infrastructure 

In order to test the performance of the framework, 
under changing conditions we will simulate an increase in 
requests. In the first half, we will keep on removing  
proxies, with constant load. While in the second half of 
the test, we will increase the load first to burden the 
current servers and then introduce new proxies. 

EXPERIMENTAL RESULTS 

The experiments are currently in progress and no 
results can be presented at this stage. 

CONCLUSIONS 

We presented a distributed network service 
framework , which was illustrated with its implementation 
as a scalable web proxy framework. Distributed services 
are the need of the time and we have demonstrated with 
our work that existing services can be improved greatly 
by switching to distributed and cooperative solutions. 

FUTURE DIRECTIONS 

The next step in improvements is to implement a 
integerated security architecture. Providing access rights 
on services and objects. 

This framework may be adapted to provide other 
services such as the currently popular streaming media 
services. It can evolve as a general framework for 
scalable network services. 

This framework gives us the ability to involve the 
client in the decision making for service request. We can 

look for furthur ways to harness the clients unused power 
to simplify the server end software and take it towards 
truly distributed system. 
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