
A Parallel Distributed Environment for Pakistan

Misbah U. Mirza, Asim-ur-Rehman, Zubair A. Shaikh, Ovais A. Khan
National University of Computer and Emerging Sciences

st-4,sector 17-D, Shah Latif Town on national Highway, Karachi, Pakistan
Email:misbah.mirza@nu.edu.pk

Abstract Parallel distributed computing systems provide
mechanisms for exploiting parallelism inherent in many
scientific and engineering applications. One such
programming environment that has successfully
demonstrated operation on a collection of heterogeneous
computing elements incorporated by one or more networks
is the Parallel Virtual Machine (PVM). It has been used on
high end computing resources such as mainframe
computers, multiprocessors, hyper cubes, and the like. In
Pakistan, the most common computing resource is a low
cost PC. The abundance of such machines provides an
opportunity to develop and use a “poor man’s
supercomputer”.

In addition, research on PVM has focused on Unix or
similar platforms. None of the formal results, to evaluate
certain benchmark applications, are available on Window
based environments. The paper reports the results of the
local PVM implementation and compares them with
results from conventional implementations of PVM.

Keywords: Parallel Distributed Computing, Concurrent
Programming, and Heterogeneous Computing.

1. Introduction
The introduction of Unix operating system provided an
opportunity to programmers to fragment their applications
in processes: a process acting as a separate program in its
own rights. This has several advantages on serial machines,
the most important being to encapsulate different tasks in a
virtual machine environment. This meant they could be run
and debugged separately without causing harm to the other
parts of the application.

While Unix provided constructs to define processes and
communication and synchronization among them, there
was a justifiable need for providing a programming
environment which could not only hide the complexity and
existence of network communication (which is essential if
different parts of an application are running on different
connected computers) but also take advantage of the
concurrency inherent in these applications by running

those tasks in parallel. Hence a number of projects were
started [1][2][3], which could result in such an environment.
PVM (parallel virtual machine) was one such successful effort.

Unix, and its subsequent look-a-likes such as Linux, therefore
provided a very useful abstraction of process to computer
scientists which proved to be a building block for more
elaborate parallel/concurrent programming environments, As a
result a lot of research in parallel computing evolved out of it.
In such a system processes can, in principle, be run in parallel
on different machines connected together. However,
computers could be of various makes, have different operating
systems, and network types.

Hence, the PVM project aimed at providing a uniform
transparent programming environment which could be
supported by all these types of hardware and software. The
advantage of such an approach was its cost effectiveness.
Since many organizations already posses large quantities of
low cost workstations PVM can provide a virtual parallel
computing environment on top of them, hence enabling them
to run large applications which could otherwise require large
and expensive computers (and hardware).

Since its successful introduction into the academic community,
PVM project has generated lot of new ideas in its application
as well as extension. It has been ported to different for
different languages like C++, and Java as well as script
languages like Perl, and Tcl/tk. Some other projects have
sprung off from the PVM project, like the Cumulvs
environment [6] to support interactive visualizations for
distributed applications running under PVM.

From its start, PVM was heavily influenced by Unix and
Linux type of operating systems. Therefore, its first and
foremost application was on systems having that kind of
platforms. Since, the advent of the IBM PC, workstations
have become more of a PC based machine, providing window
based operating systems. Microsoft has emerged as the
dominant leader in PC based workstation software platforms
and MS windows (with its variants) being the operating
system of choice for such machines
.

Figure 1. A typical PVM session

These workstations and operating system software are
most economical and versatile in their application in the
industry and academia (more so in the developing and
third world countries like Pakistan, India, and the lot). This
provides tremendous opportunity for tapping a resource
which is so widely available in most local organizations
and does not require any substantial expenditure. This has
been the motive in extending PVM to support windows-
based architectures [5].

However, the port of PVM to windows architecture has not
been effortless or smooth. Most of PVM code has been
written for Unix or Linux environment. Not all of it has
been ported. In fact, only the user interface part of PVM
has actually been ported for windows architectures.
Therefore, the PVM support for windows is prone with
errors. This research is concerned with porting PVM to
windows architectures and networks available at local
academic institutions in developing countries. The aim is
to provide supercomputing resources at extremely low
costs to the academic community which doesn’ t have the
necessary financial resources to afford expensive
supercomputers

This paper is structured into several sections. Section 2
discusses the setting up of the Windows-based PVM
implementation. Section 3 describes running applications
on such an implementation. Section 4 presents the
performance evaluation of the implementation. Finally
section 5 lays out the conclusions derived from the results
of the experiments.

2. Setting up PVM on Windows-based PC
clusters

Parallel distributed processing is beneficial for providing
supercomputing for applications in the scientific and
engineering domains. Providing this kind of prowess requires
hundreds of millions of rupees. Such financial resources are
not easily available in the developing world especially for
educational institutions like technology colleges or
universities. However, these institutions have extensive PC
based laboratories for teaching and programming purposes.
Today’ s low cost hardware and software for PCs have made
resource sharing for communication among PCs over
LAN/WANs and internet very cost effective even for these
institutions.

Thus PVM provides an alternative of providing
supercomputing affordable and readily available resources.
These institutions have high end PCs and high speed LANs.
These can be set up to support PVM and make the parallel
programming instantly available for teaching and research
staff.

Setting up PVM requires an examination of the prevailing
operating system platforms. Majority of the PCs being used in
academic institutions in Pakistan are Intel based running
windows operating systems. Occasionally, there are some
Unix/Linux servers also available. The need therefore was to
find PVM libraries which could be setup in windows
environments. Luckily, PVM project extensions have resulted
in a PVM release PVM3.4 for windows[4][5].

Running PVM requires two software processes: master
daemon and slave daemon. As windows environments do not

rows = Matrix Size / Number of Processors
for all Pl where 0 <= l < n do
 for i � l to l + rows -1
 for j � 0 to colsB
 C [i][j] � 0
 for k � 0 to colsA
 C [i][j] � C [i][j] + (A [i][k] * B [k][j])
 endfor
 endfor
 endfor
endfor

Figure 2. A row-column oriented parallel matrix
multiplication pseudo code

support Unix style ‘ forking’, a separate ‘hoster’ process is
required to do that. Hence the windows implementations of
PVM need to provide three process.According to the
virtual machine configurations of PVM, one master and
one hoster process is required on the host machine. In
addition, there is one slave daemon process for each
additional computer in the virtual machine.

The PVM set up requires that remote execution
mechanism be present on the participating computers.
Unix has built in support for this in the form of rsh and
rexec. However, windows platform used (Windows XP)
did not provide this support. We decided to write our own
remote shell daemon instead of relying on commercial
packages so that we could experiment with it rather than
relying on commercial packages.

As a result, an rsh daemon was developed and used
successfully in our windows-based PVM implementation.
This daemon provides the remote execution facility on a
PC connected to the LAN but also caters for the security
needs of the users owing the PC. This is essential to
protect the PC from other people who can intentionally
access the PC resources via the network. Hence, it
provides a secure remote execution by restricting access to
specific users and specific commands (such as allowing
commands like rexec or rsh but not allowing del, dir, and
cd commands).

To provide a convenient way for the users to interact with
the PVM system, a PVM console process is used. From
here, the user can launch parallel PVM applications.
He/She can monitor the PVM performance and alter or
reconfigure PVM environment by adding or removing
computers from it. Figure 1 shows a typical PVM console
session.

3. Running applications on the Windows-
based PVM implementation

When applications run on PVM, they perform work by
subdividing it and giving the work components to slave
tasks. Slave tasks are created dynamically by calling PVM
library functions which provide task creation capability to
applications. Unlike Unix, windows based PVM
implementation has to live with the fact that Unix like
forking is not supported here. Instead, new tasks can be
created and give the code to execute only from executable
files. Therefore, the slave task code has to be separate file
which has been compiled from different source files.

The common mode of application execution on PVM is to
compile the application source code (for the master and the
slave tasks). The compiled and linked files of the slave
tasks are copied into the disk space of the slave computers
(computers running the slave tasks). Then the application

is run by executing it from the PVM console. This launches
the master task which then creates slave tasks and activates
them.

Once created tasks perform their work and return results to
their parent task. This requires data communication among
tasks. For this purpose, the PVM provides a message based
communication protocol. PVM library provides mechanisms
to broadcast messages as well to groups of tasks. This message
protocol is completely hardware independent and the
application or user sees it as a pure data transfer mechanism
ignoring the hardware characteristics such as types of
networks or operating system platforms. For complete
introduction or reference to PVM message protocol see [2] or
[3].

4. Performance of the Windows-based PVM
implementation

To evaluate the effective performance and utility of the
windows based PVM implementation, we looked at various
benchmark applications that have been tried earlier during the
PVM project.

We chose matrix multiplication as the trial application for two
reasons. Firstly, it is most well understood application of
parallelism. Secondly, there are parallel algorithms available
for these tasks which are highly suitable for exploiting
parallelism inherent in such applications. Once the
effectiveness and usefulness of PVM under windows is proved
we can turn our attention to other types of applications also.

A well known method of matrix multiplication, which makes
itself very suitable for parallel execution, is to partition one

matrix into blocks of rows, assigning each block to a separate
computing node. Then the second matrix is broadcast in full to
each computing node. Now each computing node uses its
block of the first matrix to multiply with the whole of the
second matrix, calculating its block of the resultant matrix.
This algorithm is shown in Figure 2.

 Table 1. Results in seconds for the matrix-multiplication
algorithm given in fig 2 under PVM for windows.

 In such applications, matrix order determines the problem
complexity as it effects the problem size. When we
increase the matrix order, we increase the problem size,
hence the problem complexity increases. We created PVM
specific version of the algorithm in C++. After compiling
it, we ran it several times on PVM, each time varying
either the order of the matrix, the number of computing
nodes, or both. Table 1 gives the results in seconds for the
above algorithm when run in our windows-based PVM
environment.

The above results were plotted (performance against
problem size i.e. matrix order). Figure 3 below shows the
resulting graphs. Each curve on the graph corresponds to
the performance of the algorithm for the specified number
of computing nodes when the problem size (matrix order)
is varied.

matrix multiplication

0

100

200

300

400

500

600

700

128 256 512 1024

order of matrix

se
co

n
d

s

n=1

n=2

n=4

n=8

Figure 3. Graph showing the above performance figures
when plotted agains problem size. Here ‘n’ is the number
of computing nodes.

The graph clearly shows significant improvement in the
performance of the algorithm for larger problem sizes
when we increase the number of computing nodes
involved in the running of the algorithm. Therefore, the
implementation scales well when the matrices are large.
For smaller matrices however, the locking and shared

memory access overheads actually increase the execution
times when more computing nodes are added. This result of
the windows-based PVM implementation bears strong
correlation with the general PVM performance results reported
in [1].

Thus we have demonstrated when the problem size is
increased on PVM under windows, adding more computing
nodes to the virtual machine increases the computing power
and hence better performance.

5. Conclusions

The main reason for implementing PVM on windows-based
PCs has been the their wide spread availability. This paper
presented such an implementation. The performance of the
implementation was evaluated by running applications in
parallel.

The results of the computations on this implementation
demonstrated the usefulness of this approach by showing
significant improvement over execution times for larger sized
problems. More important, in situations like the ones we have
in Pakistani academic institutions, is the ability of the PVM to
utilize the resources that already exist and would be wasted
otherwise. Other benefits could be the availability of a
programming tool for new algorithms and applications.

PVM has provided a test bed for future ideas in parallel and
distributed computing. As a result, it has been extended and
formed the basis for further projects. The Harness project [7]
is an example in this direction. It uses PVM to provide a
virtual machine which is then used to support reconfigurable
and scalable parallel distributed architectures.

On our part, we intend to pursue PVM application, and
customize it so that we can explore some new ideas on such an
environment, for example, support for developing and running
mobile software agents on PVM.

References
1. V. S. Sunderam, PVM: A Framework for Parallel

Distributed Computing, Concurrency: Practice and
Experience, 2, 4, pp 315--339, December, 1990.

2. A. Geist, A. Beguelin, J. Dongarra, R. Manchek, W.
Jiang, and V. Sunderam, PVM: A Users' Guide and
Tutorial for Networked Parallel Computing, MIT
Press, 1994.

3. A. Beguelin, J. J. Dongarra, G. A. Geist, R. Manchek,
and V. S. Sunderam, A Users' Guide to PVM Parallel
Virtual Machine, Oak Ridge National Laboratory,
ORNL/TM-12187, September, 1994

4. G. Geist, J. Kohl, R. Manchel, and P. Papadopoulos,
New Features of PVM 3.4 and Beyond, PVM Euro

No.
of nodes Matrix order

 128 256 512 1024

1 0.771 9.153 73.155 590.579

2 0.871 5.217 38.515 302.234

4 0.931 3.305 22.252 163.375

8 0.871 2.424 13.529 91.221

Users' Group Meeting, pp 1-10, September, 1995,
Lyon, France, Hermes Publishing, Paris.

5. Markus Fischer and Jack Dongarra, Another
Architecture: PVM on Windows 95/NT,
Concurrent Computing Conference, Atlanta, GA,
March 10-11, 1994.

6. G. A. Geist, J. A. Kohl, P. M. Papadopoulos,
CUMULVS: Providing Fault-Tolerance,
Visualization and Steering of Parallel
Applications, International Journal of High
Performance Computing Applications, Volume
11, Number 3, August 1997, pp. 224-236.

7. Mauro Migliardi and Vaidy Sunderam, The
Harness metacomputing framework. In
Proceedings of the Ninth SIAM Conference on
Parallel Processing for Scientific Computing, San
Antonio (TX), USA, March 22-24 1999.

